Вода в доме - Информационный ресурс

Здесь вы можете найти информацию об особенностях эксплуатации, проверки и заправки баллонов с данными газами, а так же описание технических производственных процессов с участием этих газов, в том числе меры предосторожности при использовании.

МАФ газ: свойства и применение в сфере сваривания металлов

Время на прочтение: 7 минут

Метилацетилен-алленовая фракция (англ. Methylacetylene-propadiene gas, MPS) – это название сжиженного газа, представляющего собой соединение двух компонентов — пропина и аллена (одну четвертую часть занимает необходимый для стабилизации углеводород, как правило, пропан или изобутан). В настоящее время МАФ газ используется в качестве эффективной альтернативы ацетилену при газопламенной обработке металла. В том числе он применяется при газовой резке и сварке различных металлических изделий. […]

Глубокая очистка газов – почему особо чистые газы стоят дороже

Время на прочтение: 7 минут

Технический газ – это продукт, который может потребоваться для решения широкого спектра задач в самых различных сферах деятельности человека, в том числе науке, производстве, медицине и строительстве. Приобретая его, покупатель нередко встречается с отдельной категорией такой продукции — особо чистыми газами. Их ключевой особенностью является максимально высокий процент чистого вещества, в то время как содержание […]

Сварка титана и его сплавов: основные способы и технологические особенности

Время на прочтение: 6 минут

Титановые сплавы обладают уникальными физическими и химическими свойствами, совмещая в себе высокую прочность, стойкость к коррозийным процессам, физиологическую инертность и легкий вес. При этом сварка титана является важнейшим технологическим процессом, используемым в самых различных сферах человеческой жизни. С каждым годом технологическая сторона этого вопроса совершенствуется, благодаря чему удается повысить качество создаваемых неразрывных соединений между элементами, […]

Очистка питьевой воды техническими газами: особенности технологии

Время на прочтение: 4 минуты

Чистая и пригодная для питья H2O – это основа жизни на нашей планете, так как без нее не могут обойтись практически все живые организмы. Именно по этой причине очистка питьевой воды является одной из ключевых задач человечества на протяжении уже тысяч лет. Со временем появляются все более совершенные способы, позволяющие освободить жидкость от различных загрязнителей, […]

Газы в виноделии: особенности и цели применения

Время на прочтение: 5 минут

Вино – это невероятно популярный алкогольный напиток, который обладает многовековой историей. В наше время технология его создания всячески совершенствуется и улучшается, при этом особого внимания заслуживает и то, как именно применяются различные газы в виноделии. Благодаря их использованию удается не только обеспечить безопасность напитка, но сохранить его оптимальные вкусовые качества. Конечно, при упоминании этой […]

Термитная сварка: особенности процесса и его преимущества

Время на прочтение: 6 минут

В наше время разработано множество технологических методов, позволяющих проводить соединение металлических деталей друг с другом. Не последнее место занимает термитная сварка – технология, которая обладает большим количеством преимуществ, совмещая в себе отменную эффективность и невысокую себестоимость. Благодаря этому, такая методика получила достаточно широкое распространение в сфере тяжелой промышленности и строительства. Стоит отметить, что в […]

Как изменялись цены на гелий

Время на прочтение: 6 минут

Стоимость газов может меняться под воздействием тех или иных факторов. К слову, цены на гелий в 2018 выросли уже более чем на 100% процентов, что стало поводом для беспокойства среди компаний-поставщиков и потребителей. Особенно остро этот вопрос воспринимается на фоне слухов о том, что общие мировые запасы природного газа стремительно истощаются, а по некоторым оценкам […]

Медицинские газы и смеси: особенности применения

Время на прочтение: 6 минут

Углеводородные газы по происхождению можно разбить на три группы:

1. Природный газ – добывается из чисто газовых месторождений.

2. Естественный нефтяной газ или попутный газ – смесь углеводородов, выделяющихся из нефти при ее добыче.

3. Искусственный нефтяной газ – газ, получающейся при переработке нефти.

Главные составные части этих газов – метан, этан, пропан, бутаны и пентаны. В них так же содержаться небольшие примеси углекислого газа, сероводорода, воды.

Природные горючие газы известны человечеству давно. Упоминает о них в своих записках еще русский путешественник Афанасий Никитин, совершивший в XV веке путешествие в Индию. Однако, практическое использование естественных газов началось только в конце XIX века. Газы использовались как средство нагревания перегонных кубов. Тогда же начались интенсивные работы по поиску новых газовых месторождений.

Выходы газов чаще всего встречаются в нефтеносных и каменноугольных районах: Кавказ, район Нижней и Средней Волги до Урала, Северный Урал, Западная Сибирь. Но были разработаны и специальные газовые месторождения. Скопления газов были найдены в районе верхней Камы, в Саратовской области, в Сальских степях, Ставропольском и Краснодарском краях, на Каспийском побережье, в Дагестане и в других районах. На основе этих природных богатств возникла новая отрасль промышленности – газовая индустрия, включающая в себя производство специального оборудования – компрессоров, газодувок, форсунок, запорно-регулирующей аппаратуры, производство специальных высоконапорных труб большого диаметра, разработку методов и способов высококачественной сварки таких труб, проводимой зачастую в экстремальных условиях, разработку способов строительства газопроводов в сложных природных условиях.

Состав газов меняется в зависимости от местонахождения, но главным компонентом является метан СН 4 и его ближайшие гомологи, то есть предельные или насыщенные углеводороды.

Метан – бесцветный газ без запаха, плохо растворим в воде, (при 20 °С в 100 г воды растворяется 9 мл метана). Горит на воздухе голубоватым пламенем, выделяя 890,31 кДж/моль тепла. С кислородом и воздухом образует взрывчатые смеси (5,2-14% СН 4). До 700 °С метан устойчив. Выше этой температуры он начинает диссоциировать на углерод и водород. Пиролиз метана:

В природе метан встречается везде, где происходит гниение или разложение органических веществ без доступа воздуха., то есть в анаэробных условиях ()например, на дне болот). В более глубоких слоях земли – в каменноугольных пластах, вблизи нефтяных месторождений – метан может накапливаться в колоссальных количествах, собираясь в пустотах и трещинах угля и тому подобное. При разработке таких пластов метан выделяется в шахты, что может привести к взрыву.

Природный метан находит использование главным образом как дешевое и удобное топливо. Теплотворная способность метана (55252,5 кДж/кг) значительно больше, чем у бензина (43576,5 кДж/кг). Это позволяет использовать его в качестве топлива в двигателях внутреннего сгорания.

Нефть

Россия обладает большими запасами нефти и газа – основными источниками углеводородов. Начало работам по изучению нефти было положено великими русскими химиками А.М. Бутлеровым и В.В. Марковниковым. Значительный вклад внесли их последователи Зайцев, Вагнер, Коновалов, Фаворский, Лебедев, Зелинский, Наметкин. Российская химическая наука в области нефтепереработки традиционно опережала всех остальных по части разработки новых технологических процессов.

Нефть – маслянистая горючая жидкость, чаще всего черного цвета. Как известно, нефть представляет собой сложную смесь очень большого числа индивидуальных веществ. Главная часть – это предельные углеводороды ряда метана (алканы, C n H 2 n +2), циклические углеводороды – насыщенные (нафтены, C n H 2 n) и ненасыщенные, в том числе ароматические углеводороды. Кроме того, в состав нефтей входит вода, гетеросоединения – кислород-, азот-, серосодержащие органические вещества. Соотношение между компонентами нефти варьируются в широком диапазоне и зависят от месторождения нефти.

Каменный уголь

Ископаемый каменный уголь – сложная смесь, состоящая из различных соединений углерода, водорода, кислорода, азота и серы. Он содержит так же минеральные вещества, состоящие из соединений кремния, кальция, алюминия, магния, железа и других металлов. Полезной частью угля является его горючая масса, минеральная часть – это балласт, представляющий интерес только как потенциальный строительный материал.

Элементарный состав и теплотворная способность горючих ископаемых приведена в таблице 7.

Таблица 7

Элементарный состав и теплотворная способность ископаемых горючих

Горючая масса – это продукт постепенного разложения растительного сырья, содержащего клетчатку. Такие процессы превращения растений в ископаемые углеродистые материалы протекали в течение длительного времени (от десятков до сотен тысяч лет) и протекают в настоящее время на дне болот, озер, в недрах земли. Разложение растительных остатков происходит без доступа воздуха (то есть в анаэробных условиях), часто при участии влаги, повышенных давлении и температуре и протекают через следующие стадии:

Образование торфа;

Образование бурого угля;

Образование мягкого каменного угля;

Образование твердого угля – антрацита.

Чем больше возраст угля, тем глубже процесс обугливания и тем больше содержание углерода в том или ином продукте. Углерод присутствует в каменных углях не в свободном виде, а в связи с другими элементами и, по-видимому, образует высокополимерные молекулы. Переход образований типа торфа или молодого бурого угля в каменные угли происходит в особых условиях, без которых молодые образования могут находиться в земле десятки тысяч лет и не дать настоящего угля. Считается, что решающим фактором в процессе превращения растительных остатков в уголь являются микробиологические процессы, которые протекают с участием особого вида грибков и бактерий, выделяющих специальные ферменты, способствующие так называемой гумификации растительных остатков. Температура и давление играют роль ускорителей этих ферментативных процессов. Биохимическая теория происхождения углей получила экспериментальное подтверждение в работах русского химика В.Е. Раковского и других исследователей, которые показали, что процесс обугливания торфа, который в естественных условиях идет несколько тысячелетий, можно осуществить за несколько месяцев, если, например, обеспечить быстрый рост и размножение специальных грибков в процессе саморазогревания торфа.

Перспективное развитие крупнейших отраслей промышленности невозможно без ценнейшего сырья и энергоносителя высокого качества - природного газа. Его использование не только автоматизирует многие технологические процессы, но и значительно улучшает бытовые условия населения.

Что такое природный газ?

Не существует единой химической формулы природного газа - в каждом месторождении он имеет состав с различным соотношением входящих в него компонентов.

Природный газ - это смесь углеводородов, большую часть которых составляет метан. Остальными компонентами являются: бутан, пропан, этан, водород, сероводород, гелий, азот, диоксид углерода.

Природный газ не имеет цвета и запаха, его наличие в воздухе невозможно определить без помощи специальных приборов. Знакомый каждому человеку запах придаётся газу искусственным путём (одоризацией). Благодаря этому процессу имеется возможность ощущать присутствие газа в воздухе и предотвращать опасные для жизни ситуации.

Происхождение

Относительно происхождения газа не существует единой теории, учёные придерживаются двух версий:

  • Когда-то на месте материков был океан. Погибая, живые организмы скапливались в пространстве, в котором не было воздуха и бактерий, запускающих процесс разложения. Благодаря геологическим движениям накопленные массы погружались всё глубже в недра Земли, где под воздействием высокого давления и температуры вступали в химические реакции с водородом, образовывая углеводороды.
  • Динамика Земли способствует поднятию углеводородов, находящихся на огромной глубине, там, где меньший уровень давления. В результате этого образуются газовые или нефтяные месторождения.

Добыча

Вопреки распространённому мнению, природный газ может находиться под землёй не только в пустотах, извлечение из которых не требует значительных материальных и энергозатрат. Зачастую он концентрируется внутри горных пород с настолько мелкой пористой структурой, что человеческим глазом её не увидеть. Глубина залежей может быть небольшой, но иногда достигает нескольких километров.

Процесс включает в себя несколько стадий:

  • в результате проведения которых точно определяются места залежей.
  • Бурение добывающих скважин. Осуществляется на всей территории месторождения, что важно для равномерного уменьшения давления газа в пласте. Максимальная глубина скважин составляет 12 км.
  • Добыча. Процесс осуществляется благодаря разному уровню давления в газоносном пласте и земной поверхности. По скважинам газ стремится наружу - туда, где давление меньше, сразу попадая в систему сбора. Кроме того, осуществляется добыча попутного газа, являющегося сопутствующим продуктом при добыче нефти. Он также представляет ценность для многих отраслей промышленности.
  • Подготовка к транспортировке. Добытый газ содержит многочисленные примеси. Если их количество несущественно, газ транспортируется с помощью танкеров или трубопровода на завод для последующей переработки. От значительного количества примесей природный газ очищается на установках комплексной подготовки, которые строятся рядом с месторождением.

Зачем нужна переработка природного газа

Образование природного газа приходится на период формирования слоёв пористых пород, содержащих нефть, и угольных пластов. Помимо компонентов, важных для нужд промышленности, он содержит примеси, затрудняющие процесс транспортировки и использования конечными потребителями.

Сразу после добычи газ на установках комплексной подготовки осушается, в ходе чего из него извлекаются пары воды и серы. Дальнейшая переработка природного и попутного газа осуществляется на химических и газоперерабатывающих заводах.

Основной принцип работы заводов по переработке

Главная задача предприятия, занимающегося переработкой природного газа, - максимально возможное извлечение всех компонентов ископаемого и доведение их до товарного состояния. При этом не должен наноситься вред окружающей среде и земным недрам, а финансовые затраты необходимо сводить к минимуму.

Благодаря выполнению всех аспектов этого правила, продукты переработки природного газа считаются высококачественными и экономичными.

Способы переработки

Существуют следующие способы переработки газа:

  • физико-энергетические;
  • химико-каталитические;
  • термохимические.

Физико-энергетические методы применяются для сжатия газа и разделения его на составляющие с помощью охлаждающих или нагревательных установок. Данная технология переработки природного газа чаще всего используется непосредственно на месторождениях.

Изначально процесс сжатия и разделения осуществлялся при помощи компрессоров. На сегодняшний день успешно применяется менее затратное в финансовом плане оборудование - эжекторы и нефтяные насосы.

Химико-каталитический способ переработки природного газа подразумевает превращение метана в синтез-газ для его последующей переработки. Это возможно сделать тремя способами: паровой или углекислотной конверсией, парциальным окислением.

Зачастую используется метод парциального окисления метана. Это обусловлено удобством проведения процесса в автотермическом режиме (когда при неполном окислении углеводородов сырьё нагревается благодаря тепловыделению), скоростью реакции и отсутствием необходимости использования катализатора (как при паровой и углекислотной конверсии).

Полученный синтез-газ в дальнейшем не подвергается процессу разделения на составляющие.

Термохимические способы подразумевают термическое воздействие на природный газ, в результате чего образуются непредельные углеводороды (например, этилен, пропилен). Осуществление процесса возможно только при очень высоких температурах (около 11 тыс. градусов Цельсия) и давлении в несколько атмосфер.

Продукты переработки

У многих людей слово «газ» ассоциируется с топливом и газовой плитой. На самом же деле применение его составляющих более обширно:

  • гелий - ценное сырьё, используемое в высоких технологиях, например при изготовлении медицинского оборудования и магнитных подушек для длительных поездок в общественном транспорте, при конструировании ядерных реакторов и космических спутников;
  • формальдегид, один из производных метана, - сырьё, играющее большую роль в производстве фенопластов (тормозные накладки, бильярдные шары) и смол, являющихся важным компонентом строительных конструкционных материалов (фанера, ДВП), лакокрасочных и теплоизоляционных изделий;
  • аммиак - используется в фармацевтической (водный раствор), сельскохозяйственной (удобрения) и пищевой (усилитель вкусовых свойств) отраслях промышленности;
  • этан - сырьё, из которого производят полиэтилен;
  • уксусная кислота - широко применяется в текстильной промышленности;
  • метанол - топливо для автотранспорта.

Добыча и переработка природного газа - процессы, благодаря которым эффективно развиваются важнейшие отрасли промышленности. Конечному потребителю газ поступает после тщательной обработки, его применение значительно улучшает условия быта.

Гелий используют для создания инертной и защитной атмосферы при плавке металлов, сварке и резке, при перекачивании ракетного топлива, для заполнения дирижаблей и аэростатов, как компонент среды гелиевых лазеров. Жидкий гелий, самая холодная жидкость на Земле,- уникальный хладагент в экспериментальной физике, позволяющий использовать сверхнизкие температуры в научных исследованиях (например, при изучении электрической сверхпроводимости). Благодаря тому, что гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам. Замена азота на гелий предотвращает кессонную болезнь (при вдыхании обычного воздуха азот под повышенным давлением растворяется в крови, а затем выделяется из нее в виде пузырьков, закупоривающих мелкие сосуды).

Азот

Большая часть от добываемого свободного азота, в виде газообразном виде, применяется для промышленного производства аммиака, который после в значительных количествах перерабатывают в азотную кислоту, взрывчатые вещества, удобрения и пр. Кроме прямого синтеза аммиака из элементов, серьезное промышленное значение для связывания азота воздуха имеет разработанный в 1905 году цианамидный метод, который основан на том, что при 10000С карбид кальция (получаемый накаливанием смеси известии угля в электрической печи) взаимодействует со свободным азотом. Получаемый свободный азот, газ в баллонах применяют во различных отраслях промышленности: как среду инертную при разнообразных металлургических и химических процессах, в ртутных термометрах для заполнения свободного пространства, при перекачке разных горючих жидкостей и т.п. Жидкий азот, также транспортируемый в баллонах используется в разных холодильных установках, в целях медицинских, для лечения азотом. Хранят и транспортируют азот в стальных сосудах Дьюара, а азот газообразный в сжатом виде - в баллонах. Также широко применяют различные соединения азота. Производство связанного азота стало семимильными шагами развиваться после первой мировой войны и сегодня достигло глобальных масштабов.

Аргон

Все больше сфер применения появляется у дуговой электросварки при помощи аргона. Аргонная струя позволяет сваривать тонкостенные изделия, а также металлы, которые до этого считались трудносвариваемыми. Электрическая дуга в аргонной атмосфере стала неким переворотом в технике резки металлов. Теперь процесс намного ускорился и появилась возможность разрезать толстые листы наиболее тугоплавких металлов. Аргон, продуваемый вдоль столба дуги (применяется смесь с водородом) оберегает кромки разреза, а также вольфрамовый электрод от образования нитридных, окисных и иных пленок. Вместе с тем он сжимает и концентрирует дугу на небольшой поверхности, это влияет на то, что температура в зоне резки доходит 4000-6000° по Цельсию. И эта же газовая струя способна выдувать продукты резки. При сварке с использованием аргонной струи отсутствует надобность во флюсах и электродных покрытиях, а значит, и в зачистке швов от шлака и остатков флюса. Аргон транспортируют и хранят в баллонах по 40 л, баллоны окрашены в серый цвет, маркированы зеленой полосой и имеют зеленую надпись. Давление 150 атм. Наиболее экономична перевозка аргона сжиженного, для этих целей используют сосуды Дюара, а также специальные цистерны. Аргон применяется как радиоактивный индикатор: первый – в сфере медицины и фармакологии, второй – во время исследования газовых потоков, эффективности спетом вентиляции и в различных научных исследованиях. Естественно, это не все зоны применения аргона.

Пропан

Пропан (C3H8) - бесцветный газ без запаха, очень мало растворим в воде. Относится к классу алканов. Используется пропан в качестве топлива и как сырье для производства полипропилена и растворителей. Пропан на ряду с метаном, этаном и бутаном содержится в природном газе. Искусственный способ производства пропана называться Крекинг (англ. cracking, расщепление), когда из длинной молекулы нефти путем высокотемпературной обработки получают вещества разных фракций (летучести), в том числе и пропан. Так как этот газ не имеет ни запаха ни цвета и в тоже время является токсичным, то для бытового использования в него добавляются одоранты - вещества, обладающие сильным неприятным запахом.

Углекислота

УГЛЕКИСЛОТА - неправильное название углерода диоксида. Ангидрид угольной кислоты (Аcidum cаrbonicum аnhydricum ; Саrbonei dioxydum): СО 2 . В 1,5 раза тяжелее воздуха. Бесцветный газ без запаха. При комнатной температуре, воздействием давления в 60 атм происходит пре5вращение газа в жидкоость. Жидкий угольный ангидрид (углекислота) доступен покупателям в стальных баллонах различной емкости. Прцесс образования углекислоты в организме в процессе обмена веществ и играет важную роль в регуляции дыхания и кровообращения. Она оказывает влияние на дыхательный центр и является его специфическим возбудителем. При попадании в легкие небольших концентраций углекислоты (от 3 до 7,5 к учащению дыхания а также происходит сужение кровеносных сосудов и повышается артериальное давление. Однако высокие концентрации СО2 могут вызвать ацидоз, судороги, одышку и паралич дыхательного центра. Углекислоту применяют с кислородом при отравлениях летучими веществами, применяемых для наркоза, сероводородом, окисью углерода, при асфиксии новорожденных и т. п. Углекислоту применяли в хирургической практике во время общей анестезии и после операции для искусственного улучшения дыхания, для предупреждения пневмоний. Жидкая углекислота, выпускаемая из баллона, помещенного вниз вентилем быстро испаряется, при этом поглощается так много тепла, что она превращается в твердую белую снегообразную массу. Это свойство углекислоты применяется во множестве сфер деятельности. При смешивании твердого угольного ангидрида с эфиром происходит падение температуры до - 80 "С. Криотерапия (лечение холодом) нашла сове применение при лечении различных кожных заболеваний (красная волчанка, лепрозные узлы, бородавки и т. п.). для этого полученное охлажденное вещество (углекислый снег) собирают в специальную тару и прикладывают к пораженному участку, в следствие чего происходит омертвение пораженной ткани, а так же вирусов и бактерий вызвавших болезнь. Газированные напитки (напитки, содержащие растворенную углекислоту), вызывают переполнение кровью слизистой оболочки и усиливают секреторную, всасывательную и двигательную активность желудочно-кишечного тракта. Углекислота, содержащаяся в естественных минеральных водах, используемых для лечебных ванн, оказывает сложное положительное влияние на организм, однако любые лечебные процедуры должны производится под присмотром врача. Углекислота так даже вызывает активизацию роста у растений, в связи с чем она часто используется в тепличных хозяйствах. PS не следует путать Двуокись углерода, углекислый газ – СО2 (газ без запаха и цвета, содержится также в подкормках для растений) Угольная кислота – Н2СО3 (растворенная в воде двуокись углерода; слабая кислота).

Кислород

В промышленности кислород получают путем разделения воздуха при достаточно низких температурах. Воздух сначала сжимают компрессором, воздух при этом разогревается. Далее сжатому газу позволяют охладиться до необходимой комнатной температуры, а после обеспечивают свободное расширение газа. Во время расширения температура обрабатываемого газа резко понижается. Теперь охлажденный воздух, у которого температура на несколько десятков градусов ниже, чем температуры окружающей среды, можно снова подвергать сжатию до 10-15 МПа. После этой процедуры выделившуюся теплоту снова отбирают. После нескольких циклов «расширения - сжатия» температура опускается ниже, чем температура кипения азота и кислорода. Таким образом получают жидкий воздух, который после подвергается перегонке (иначе - дистилляции). Области применения кислорода довольно разнообразны. Основную массу получаемого кислорода из воздуха применяют в металлургии. Именно кислородное дутье, а не воздушное позволяет в домнах значительно ускорять доменные процессы и экономить кокс, получать чугун отличного качества. Кислородное дутье применяется в кислородных конвертерах во время передела чугуна в сталь. Воздух, обогащенный кислородом, или чистый кислород незаменим для получения многих других видов металлов, например, меди, свинца, никеля и пр. Кислород также используют при сварке металлов и резке.

Ацетилен

В качестве горючего газа для газовой сварки получил распространение ацетилен соединение кислорода с водородом. При нормальной to и давлением ацетилен находится в газообразном состоянии. Ацетилен бесцветный газ. В нем присутствуют примеси сероводорода и аммиак. Ацетилен есть взрывоопасный газ. Чистый ацетилен способен взрываться при избыточном давлении свыше 1.5 кгс/см2, при быстром нагревании до 450-500С. Смесь ацетилена с воздухом взрываться при атмосферном давлении, если в смеси содержится от 2.2 до 93% ацетилена по объему. Ацетилен для промышленных целей получают разложением жидких горючих действием электродугового разряда, а так же разложением карбида кальция водой.

В нанотехнологиях активно используются сверхчистые азот, гелий, водород, криптон, аммиак, ксенон и некоторые иные газы и разные газовые смеси, произведенные на их основе.

Для производства и исследования многих видов нанообъектов нужны сверхнизкие температуры, получить которые невозможно без использования жидкого гелия.

Металлургия и технические газы

Металлургическая отрасль - основной потребитель технических газов. Большие объемы аргона, кислорода и азоты применяются в черной и цветной металлургии. Кислород используется для разогрева, а также усиления реакций процессов сжигания производства стали и чугуна, применяется он и для снижения выбросов в отводных газов загрязняющих веществ. Аргон необходим для очистки, дегазации и гомогенизации в производстве стали. Азот и аргон находят широкое применение в качестве газов инертных в цветной металлургии.

Технические газы для медицины

Технические газы незаменимы в некоторых областях медицины и здравоохранения. Жидкий азот используется в медицине для хранения разнообразных биологических материалов в низких температурах, а также в криохирургии. Азот газообразный особой чистоты либо азот ПНГ (поверочный нулевой газ) применяется как газ-носитель газа для аналитического оборудования. Гелий жидкий гелий является основным хладагентом для медицинских томографов.

3

1 ФГБОУ ВПО «Саратовский государственный технический университет имени Гагарина Ю.А.»

2 ФГБУН «Казанский научный центр РАН»

3 ФГБУН «Институт химии нефти СО РАН»

Проведен анализ потребностей промышленности в технологических газах. Указан альтернативный источник их получения на базе термохимической конверсии горючих сланцев. Рассмотрены качественные характеристики сланцев основных месторождений Поволжья и приведены основные технологии конверсии в энергоносители и материалы.

горючий сланец

газификация

теплоноситель

технологический газ

парогазовая смесь

энергоэффективность

1. Панов В.И. Повышение эффективности электроэнергетики за счет энерготехнологических схем топливоиспользования (Обзор). – М.: Информэнерго, 1975. – 61 с.

2. Блохин А.И. Зарецкий М.И., Стельмах Г.П., Фрайман Г.В. Энерготехнологическая переработка топлив твердым теплоносителем – М.: Светлый СТАН, 2005. – 336 с.

3. Urov K., Sumberg A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops // Oil Shale. 1999. – Vol. 16, № 3. – 64 p.

4. Капустин М.А., Нефедов Б.К. Окись углерода и водород – перспективное исходное сырье для синтезов продуктов нефтехимии. – М.: ЦНИИТЭНЕФТЕХИМ, 1981. – 60 с.

5. Янов А.В. Оптимизация состава оборудования и рабочих параметров газификации сернистых сланцев Поволжья для использования с ПГУ: Автореф. дис. канд. техн. наук. – Саратов, 2005. – 20 с.

6. Косова О.Ю. Разработка и моделирование установки для термической обработки горючих сланцев: Автореф. дис. канд. техн. наук. – Саратов, 2008. – 19 с.

Потребность в топливе растет в энергетике, химической промышленности, металлургии и в других отраслях народного хозяйства. Так как рост потребности превышает рост добычи традиционных углеводородов, дефицит топлива будет нарастать, и вызывать постоянное его удорожание. Это будет способствовать широкому вовлечению в топливно-энергетический баланс низкосортных местных видов топлива и в первую очередь твердых его видов - бурых углей, горючих сланцев, торфов и пр. .

При этом современная наука предлагает новые технологические процессы и схемы, обеспечивающие существенное повышение эффективности использования основных видов природного органического топлива с одновременным значительным сокращением загрязнения окружающей среды вредными выбросами . При этом в качестве головных процессов предлагается использовать пиролиз или газификацию, получаемые в результате этого твердые, жидкие и газообразные вещества могут быть использованы как ценные продукты различного назначения в зависимости от потребностей промышленности.

В свете вышесказанного особую значимость в качестве сырья приобретают горючие сланцы. Так в Приволжском федеральном округе Государственным балансом учитываются 40 месторождений и участков горючих сланцев, расположенных в Ульяновской, Самарской, Саратовской и Оренбургской областях, с суммарным балансовым запасами кат. А + В + С 1 - 1233,236 млн т, С 2 - 2001,113 млн т, забалансовыми - 468,753 млн т.

Преобладающая часть балансовых запасов горючих сланцев округа (53,9 %) находится на 24 участках для подземной отработки в Самарской области. Несколько меньшая часть балансовых запасов горючих сланцев округа (30,5 %) учитывается на 4 участках для открытой разработки Оренбургской области, 6 участках для подземной и одном - для открытой разработки в Саратовской области (11,7 %) и на пяти участках для подземной разработки в Ульяновской области (3,9 %).

Балансовые запасы горючих сланцев пяти объектов для открытой разработки составляют 33,8 от таковых по Приволжскому федеральному округу. Остальные балансовые запасы горючих сланцев округа учитываются на 35 объектах для подземного способа отработки. Однако не только в указанных областях обнаружены горючие сланцы но и в республике Татарстан (табл. 1), республике Башкирия и др. причем все они одного геологического возраста - юрского периода.

Однако наибольший интерес представляют характеристики горючего сланца Кашпирского месторождения (табл. 2) единственного на сегодняшний день из разрабатываемых промышленно.

На рис. 1 представлена принципиальная технологическая схема процесса, а в - принцип работы.

Таблица 1

Характеристика горючих сланцев Республики Татарстан

Таблица 2

Характеристика Кашпирского горючего сланца

Рис. 1. Технологическая схема термической переработки сланца в агрегате УТТ-3000: 1 - аэрофонтанная сушилка; 2 - циклон сухого сланца; 3 - смеситель; 4 - барабанный реактор; 5 - пылевая камера; 6 - технологическая топка; 7 - байпас; 8 - циклон теплоносителя; 9 - зольный циклон; 10 - котел-утилизатор; 11 - зольный теплообменник

Основными товарными продуктами термической переработки 1 т сланца, имеющего теплоту сгорания Q н р = 8,4 МДж/кг, являются:

1) жидкое малосернистое и малозольное котельное топливо с теплотой сгорания 37,0 Мдж/кг в количестве 90 кг;

2) жидкое газотурбинное топливо с теплотой сгорания 39,0 МДж/кг в количестве 40 кг;

3) газ полукоксовый с теплотой сгорания 46,1 МДж/м3 в количестве 39,6 м3;

4) газовый бензин с теплотой сгорания 41,2 МДж/кг в количестве 7,9 кг.

При этом технологический газ отделяемый в аппарате 5 может стать альтернативой нефтяному сырью в следующих процесса: производство метанола; синтеза этиленгликоля и глецерина; каталитический синтез метана, получение этилена и этана; синтез предельных, непредельных и высших углеводородов и ряд других .

Вопросы эффективного использования топлива при комплексной его переработке с производством электрической и тепловой энергии, синтез-газа, водорода, химических продуктов всегда находились в центре внимания отечественных и зарубежных теплоэнергетиков. В проведены исследования по комплексной переработке Поволжских горючих сланцев в газогенераторах Lurgi на парокислородном и паровоздушном дутье под давлением до 2 МПа. Полученный газ в основной своей части состоит из горючих газов, смолы и газового бензина, его теплота сгорания достигает 16 МДж/м 3 . Схема парогазовой установки на продуктах газификации показана на рис. 2.

Для указанной схемы выполнена оптимизация схем и рабочих параметров газификации сернистых сланцев Поволжья для использования в ПГУ. При этом ее отличает довольно высокая экономическая эффективность (в ценах 2005 г.): ЧДД = 2082,28 млн руб., т.е. в 3,9 раза выше, чем аналогичная установка на природном газе, индекс доходности больше на 28,9 %, а срок окупаемости на полгода меньше.

Особую значимость на сегодняшний день приобретает установки для термической переработки сланца на базе трубчатых реакторов типа газовзвесь (рис. 3) . Принцип работы установки детально изложен в .

Данная установка дает возможность эффективно управлять процессом термической обработки твердого топлива и получать продукты требуемого качества. Для этого используются высокоскоростные режимы нагрева топливной газовзвеси в трубчатых реакторах и охлаждения получаемых парогазовых целевых продуктов в закалочном теплообменнике. Изменяя температурный уровень и время пребывания того и другого потоков в зоне тепловой обработки, можно влиять на состав получаемых продуктов.

Рис. 2. Принципиальная схема ПГУ с внутрицикловой газификацией горючих сланцев: ГГ - газогенератор; Ск - скруббер очистки парогазовой смеси от смоляных продуктов и водяных паров; Х - предварительный холодильник; Аб - абсорбер тонкой очистки от кислых газов; Дб-1, Дб-2 - десорбер первой и второй ступени очистки; И - испаритель водоаммиачной АбХМ; АбХ - абсорбер АбХМ; К - конденсатор АбХМ; Г - генератор АбХМ; РК - реакционная камера установки производства серы; КУs - котёл-утилизатор установки производства серы; Кs - конденсатор серы; P - разделитель жидкостей; БХО - система биохимической очистки сточных вод; ВРУ - воздухоразделительная установка; ов - охлаждающая вода; сб - сланцевый бензин

Рис. 3. Схема установки пирогазификации: 1 - корпус; 2 - решетка газораспределительная; 3 - кипящий слой; 4 - трубчатые реакторы; 5, 8 - питатели-дозаторы; 6, 9 - сепараторы; 7 - теплообменник закалочный; 10 - теплообменник зольный; 11 - топка технологическая; 12 - теплообменник «газ-воздух»; 13 - стояк

Для дозированной подачи топливных частиц в реакторные трубы может быть использован кипящий слой. Подобного типа дозаторы успешно используются для питания угольной пылью горелок крупных энергетических котлов.

Существующие и разрабатываемые способы пирогазификации позволяют превратить в горючие газы 60-70 % углерода, имеющегося в твердом топливе. Остальное количество расходуется в процессе горения для получения тепла, необходимого для осуществления эндотермических реакций газификации.

Заключение

Показана перспективная возможность замены традиционных источников углеводородов для получения технологических газов с использованием ресурса горючих сланцев. Приведены наиболее изученные схемы комплексного использования горючих сланцев для получения энергоносителей, электрической и тепловой энергии.

Исследование выполнено при финансовой поддержке РФФИ и Правительства Республики Татарстан в рамках научного проекта №15-48-02313 «р_поволжье_а».

Библиографическая ссылка

Мракин А.Н., Селиванов А.А., Морев А.А., Мингалеева Г.Р., Галькеева А.А., Савельев В.В. ПОЛУЧЕНИЕ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ ПРИ ТЕРМОХИМИЧЕСКОЙ КОНВЕРСИИ ГОРЮЧИХ СЛАНЦЕВ ПОВОЛЖЬЯ // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 10-3. – С. 429-432;
URL: https://applied-research.ru/ru/article/view?id=7512 (дата обращения: 20.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Вода в доме - Информационный ресурс