Вода в доме - Информационный ресурс

Нанотехнологии способны произвести революцию в сельском хозяйстве. Молекулярные роботы смогут производить пищу, «освободив» от этого растения и животных. С этой целью они будут использовать любое «подножное сырье»: воду и воздух, где есть главные нужные элементы – углерод, кислород, азот, водород, алюминий и кремний, а остальные, как и для «обычных» живых организмов, потребуются в микроколичествах. К примеру, теоретически возможно производить молоко прямо из травы, минуя промежуточное звено – корову. Человеку не придется убивать животных, чтобы полакомиться жареной курочкой или кусочком копченого сала. Предметы потребления будут производиться «прямо на дому»

Наноеда (nanofood) – термин новый, малопонятный и неказистый. Еда для нанолюдей? Очень маленькие порции? Еда, сработанная на нанофабриках? Нет, конечно. Но всё же это - любопытное направление в пищевой отрасли. Оказывается, наноеда – это целый набор научных идей, которые уже находятся на пути к реализации и применению в промышленности. Во-первых, нанотехнологии могут предоставить пищевикам уникальные возможности по тотальному мониторингу в реальном времени качества и безопасности продуктов непосредственно в процессе производства. Речь идёт о диагностических машинах с применением различных наносенсоров или так называемых квантовых точек, способных быстро и надёжно выявлять в продуктах мельчайшие химические загрязнения или опасные биологические агенты. И производство пищи, и её транспортировка, и методы хранения могут получить свою порцию полезных инноваций от нанотехнологической отрасли. По оценке учёных, первые серийные машины такого рода появятся на массовых пищевых производствах в ближайшие четыре года. Но на повестке дня и более радикальные идеи. Вы готовы проглотить наночастицы, которые невозможно увидеть? А что если наночастицы будут целенаправленно использоваться для доставки к точно выбранным частям организма полезных веществ и лекарств? Что если такие нанокапсулы можно будет внедрять в пищевые продукты? Пока ещё никто не употреблял наноеду, но предварительные разработки уже идут. Специалисты говорят, что съедобные наночастицы могут быть сделаны из кремния, керамики или полимеров. И разумеется - органических веществ. И если в отношении безопасности так называемых "мягких" частиц, сходных по строению и составу с биологическими материалами – всё ясно, то "твёрдые" частицы, составленные из неорганических веществ – это большое белое пятно на пересечении двух территорий - нанотехнологии и биологии. Учёные ещё не могут сказать, по каким маршрутам подобные частицы будут путешествовать в теле, и где в результате остановятся. Это ещё предстоит выяснить. Зато некоторые специалисты уже рисуют футуристические картины преимуществ наноеды. Помимо доставки ценных питательных веществ к нужным клеткам. Идея заключается в следующем: каждый покупает один и тот же напиток, но затем потребитель сможет сам управлять наночастицами так, что на его глазах будут меняться вкус, цвет, аромат и концентрация напитка.

Применение нанотехнологий в овощеводстве.

Мониторинг разработанных нанотехнологических процессов и наноматериалов подтверждает, что применение нанопрепаратов в овощеводстве обеспечивает повышение устойчивости к неблагоприятным погодным условиям и увеличение выхода готовой продукции. Почти для всех технических и продовольственных культур – картофеля, овощных, плодово-ягодных, хлопка и льна показатели урожая увеличились в 1,5-2 раза. Нанотехнологии уже активно внедряются при послеуборочной обработке подсолнечника, табака и картофеля, хранении яблок в регулируемых средах, озонировании воздушной среды.

В свете последних открытий нанотехнологий была изучена биологическая роль кремния в живых организмах и изучена биологическая активность органических соединений кремния – силатранов. Силатраны, являющиеся клеточным образованием и содержащие кремний, оказывают физиологическое действие на живые организмы на всех этапах эволюционного развития от микроорганизмов до человека. Применение кремнеорганических биостимуляторов в овощеводстве позволяет повысить холодостойкость, выносливость к жаре и засухе, помогает благополучно выйти из стрессовых погодных ситуаций (возвратные заморозки, резкие перепады температуры и т. д.), усиливает защитные функции растений к болезням и вредителям. Препараты снимают угнетающее, седативное действие химических реагентов по защите растений при комплексных обработках.

Суперсовременное направление нанобиотехнологии (нанотехнологии в биологии) в овощеводстве – это создание культурных растений, особенно устойчивых к насекомым вредителям.

Ультрафиолетовое излучение (УФИ) в растениеводстве - наименее исследованная часть спектрального диапазона оптического излучения. Для повышения урожайности и качества продукции теплиц имеются резервы, пока не получившие широкого распространения, но которые могут быть использованы в решении основных проблем растениеводства защищенного грунта. УФИ применяют в селекционных целях и при предпосевной обработке семян. При непосредственном воздействии на растения излучение может служить эффективным регулятором основных процессов метаболизма в живых биообъектах. В результате разработки и применения методов УФИ получены положительные данные по борьбе с вредителями сельскохозяйственных растений, а также гипотетические предпосылки по денитратизации почвы. Предпосевная обработка семян УФИ вышла на уровень индустриальных методов подготовки семенного зерна к посеву и, как показали исследования, они вдвое эффективнее, чем солнечный или воздушнотепловой обогрев. Облучение семян в оптимальных дозах стимулирует общее развитие растений, повышает урожайность. Воздействие УФИ на семена основано на дезинфекции, дезинсекции и способности вызывать стимуляцию фотохимических превращений в облучаемом семени.


В прорастающих семенах и растениях роль регуляторов скорости биохимических процессов выполняют ферменты, ростовые вещества и витамины. Находясь в небольших количествах, эти вещества оказывают влияние как на скорость роста, так и на направление синтеза клетки и растения в целом. Поэтому даже небольшие, на первый взгляд, химические и биохимические изменения в семенах, связанные с поглощением энергии УФИ, могут оказать существенное влияние на развитие растения и его продуктивность.

Антимикробное действие УФИ проявляется в фотохимических повреждениях ДНК в клеточном ядре микроорганизмов, что приводит к гибели микробной клетки в первом или последующих поколениях.

В тепличных хозяйствах остро стоит проблема борьбы с вирусными инфекциями. Для практики важно установить летальную дозу УФИ для растений и изучить относительную сопротивляемость различных видов. Значение пороговой дозы для растений при облучении необходимо при использовании гербицидных устройств. При умеренных дозах излучения можно применять бактерицидные лампы для уничтожения микроорганизмов растений, не нанося вреда самим растениям.

Примером сельскохозяйственной нанотехнологии может служить и облучение растений когерентным светом. Растения обрабатывают квазимонохроматическим светом с высокой и низкойкогерентностью.

Основные области применения
нанотехнологии и наноматериалов в АПК

При развитии биотехнологии, разработке новых материалов нанотехнологии имеют очень хорошие перспективы. Среди наиболее перспективных научных направлений в области биологии и сельского хозяйства эксперты называют воссоздание живой ткани как растительного, так и животного происхождения, получение новых материалов, создаваемых из заданных атомов и молекул. Прогнозируется появление новых открытий в биологии, химии и физике, способных оказать мощное воздействие на развитие цивилизации.

По прогнозам Министерства торговли Великобритании, в 2015 г. спрос на нанотехнологии составит не менее 1 трлн. долларов в год, а численность специалистов, занятых в данной отрасли, вырастет до 2 млн. человек. Американская ассоциация «National Science Foundation», прогнозирует увеличение объема рынка товаров и услуг в мире с использованием нанотехнологий в ближайшие 10-15 лет до 1 трлн. долларов. В сфере здравоохранения использование нанотехнологии позволит увеличить продолжительность жизни и расширить физические возможности человека. В фармакологии в ближайшие 10-15 лет около половины всей продукции будет производиться с использованием нанотехнологии, что составит объем более 180 млрд. долларов. В химической промышленности нанотехнологии уже применяются во многих химических процессах, причем рост рынка составляет приблизительно до 100 млрд. долларов в год. По прогнозам экспертов рынок товаров с использованием нанотехнологий будет увеличиваться на 10% в год.

В сфере защиты окружающей среды применение нанотехнологий ускорит развитие возобновляемых источников энергии, обеспечит более экономичные способы фильтрации воды, что позволит уменьшить загрязнение окружающей среды и будет способствовать экономии значительных ресурсов.

Весьма актуальна проблема обеспечения человечества качественной питьевой водой. По оценкам экспертов к 2050 году две трети населения Земли будут испытывать недостаток в пресной воде. Нанотехнологии позволят решить эти проблемы за счет использования недорогих децентрализованных систем очистки и опреснения воды, систем отделения загрязняющих веществ на молекулярном уровне и нанофильтрации.

В сельском хозяйстве нанотехнологии помогут увеличить урожайность сельскохозяйственных культур, сократить применение минеральных удобрений и пестицидов, помогут перевести значительные объемы сельскохозяйственной продукции в экологически безопасную область, увеличить производство натуральных продуктов. Согласно статистике численность мирового населения к 2050г. достигнет 8,9 млрд. человек, что вызовет существенное увеличение потребления продуктов питания.

Применение нанотехнологий позволит изменить технику возделывания земель за счет использования наносенсоров, нанопестицидов и системы децентрализованной очистки воды. Нанотехнологии сделают возможным лечение растений на генном уровне, позволят создать высокоурожайные сорта, особо стойкие к неблагоприятным экологическим условиям. Нанотехнологии могут быть успешно применены для создания биосовместимых материалов, восстановления тканей, создания неотторгаемых организмом искусственных тканей и сенсоров в животноводстве, а также для снижения негативного давления на природную среду.


Биотехнология и генная инженерия

Развитие сельского хозяйства в значительной степени определяется необходимостью постоянного увеличения объемов выращиваемой продукции и сокращения потерь в процессе уборки, переработки, хранения, что приводит к интенсификации сельскохозяйственного производства и увеличению антропогенной нагрузки на окружающую среду. Теоретически интенсификация возможна в большинстве развитых стран, но она обычно приводит нарушению экологического равновесия. В этой связи постоянно возрастает интерес к нанотехнологиям в плане обеспечения населения безопасным продовольствием при соблюдении экологических норм.

Анализ отечественных и зарубежных разработок показывает, что наиболее востребованными нанотехнологиями для решения задач сельского хозяйства, будут разработки в области биотехнологии и генной инженерии.

Нанобиотехнология занимается биообъектами и биопроцессами на молекулярном и клеточном уровнях. С ее помощью можно решить многие проблемы биологии клетки и в целом сельского хозяйства. Нанобиотехнология открывает широкие возможности в переработке сельскохозяйственной продукции. Для повышения эффективности перерабатываемого сырья и получения новых видов продукции разрабатываются технологии получения пищевых добавок и лекарств методами микроинкапсулирования. В ее основе лежит производство свободносыпучих нанопорошков и распыление их в восках. Приготовленные таким образом продукты находят применение как исходное сырье для фармацевтической промышленности и так же при изготовлении продуктов питания. Это могут быть лекарственные вещества, витамины, минералы, сырье, получаемое из растений, или другие специальные продукты, для которых необходимо сохранить вкус и стабильность при хранении. В капсулированном виде они обладают повышенной стабильностью ингредиентов и пониженной реакционной способностью по отношении к другим компонентам, возможностью регулирования скорости выделения действующего вещества от нескольких минут до нескольких часов. Такой способ получения частиц позволяет строго контролировать процессы смешения всех ингредиентов в соответствии с рецептурой и последующей операцией таблетирования, что очень важно при производстве сложных препаратов. Капсулирование придает известным продуктам новые и неожиданные свойства, такие как маскировка вкуса, порошкообразные ароматические вещества, лучшее распределение пигментов или лекарств в композициях и т.д..

Одним из самых многообещающих направлений научных разработок в этой сфере является создание наноконструкций. Большинство растений и животных на 95% состоит всего из четырех атомов: атомов водорода, кислорода, азота и углерода. Для того чтобы собирать биологические нанообъекты и связывать их другими молекулами, необходимо организовать идентификацию на молекулярном уровне. Атомы обладают возможностью самоорганизовываться или организовываться посредством опорной поверхности, поэтому они наиболее перспективны в качестве основы при производстве биологических наноструктур, новых биоматериалов.

Огромные возможности нанобиотехнологии открывает клеточная инженерия. Растительные клетки из зон роста могут служить источником генетического потенциала, свойственного данному растению. Используя способность растительных клеток меристимной зоны превращаться в специальных средах в сформированное растение, меристимные клетки применяют для получения безвирусных растений и в селекционной работе для получения растений с заранее нужными свойствами.

Развивающиеся направления физико-химической биологии в свою очередь расширяют возможности применения нанобиотехнологии. Это относится к генной инженерии, к созданию и использованию генетически модифицированных клеток. Сочетание различных фрагментов ДНК, позволяющее создавать необходимые генетические программы, показывает научную значимость исследований в данном направлении.

В целях развития нанотехнологий в селекционной работе разрабатываются приемы, обеспечивающие возможность создавать и модифицировать объекты, с характерными размерами менее 100 нм. Сегодня молекулярно-генетические методы позволяют расширить и дополнить используемые эколого-географические и морфолого-биологические методы традиционной селекции. Нанобиотехнологии, как и классическая селекция, могут существенно влиять на производство и качество урожая, продуктивность растений, а также на поддержание и воспроизводство сортов с использованием генетической изменчивости и разнообразия. Новые нанобиотехнологические методы позволяют создавать рекомбинантные молекулы ДНК и новые организмы с заданными свойствами, что в свою очередь позволяет добиться получения принципиально новых сортов растений и сельскохозяйственных материалов.

Нанобиотехнология вносит существенный вклад в улучшение комплексного питания растений, повышение сопротивляемости культур неблагоприятным климатическим условиям, стрессам, а также в борьбу с болезнями и вредителями. Одним из основных направлений нанобиотехнологии растений является получение культурных растений, не восприимчивых к воздействию вредных веществ. Гербициды широкого спектра действия, уничтожая сорные растения, оказывают угнетающее действие и на культурные посевы. Работа над данной проблемой ведется в двух направлениях: прямая селекция и создание трансгенных растений путем введения в клетку генов гербицид-толерантности.

Введение генов инсектицидного белка-токсина и растительных белков защищает генетически модифицированные (ГМ) растения от широкого круга вредных насекомых. Применять инсектициды при выращивании таких растений не требуется. При изменении соотношения насыщенных и ненасыщенных жирных кислот в мембранах растительных клеток были выведены холодоустойчивые, засухоустойчивые формы ГМ растений, а также ГМ растений, устойчивых к засолению почв, что значительно расширило ареал произрастания многих культурных растений.

Необходимо отметить, что существует серьезная опасность использования генно- модифицированных организмов (ГМО) в пищевых цепях людей и животных.

Бурный прогресс в области молекулярной и клеточной биологии обусловили появление беспрецедентных возможностей по изменению свойств живых организмов. Геномные исследования позволили предложить новые способы лечения различных ранее неизлечимых заболеваний, создать новые, строго специфичные лекарственные препараты и многое другое.

Вместе с тем, как это всегда бывает в случае грандиозных открытий, наряду с очевидными, гуманными формами реализации научных открытий, появились новые практические направления, целесообразность которых вызывает серьезные сомнения. Одним из ярчайших представителей такого направления является промышленное производство и применение ГМО. Сегодня целые отрасли промышленности занимаются производством таких ГМО, как растения, животные, рыбы, микроорганизмы.

Оставляя в стороне вопросы эффективности использования ГМО с точки зрения урожайности, пищевой ценности и т.д., следует обратить внимание на проблемы, которые равнозначны угрозам, сопровождающим внедрение ГМО. Масштабное выращивание ГМ растений приводит к драматическим изменениям биоценоза посевных площадей и прилегающих территорий. Вместо ожидаемого уменьшения применения минеральных удобрений и пестицидов при выращивании ГМ растений на практике происходит значительное увеличение их использования. При этом, как правило, трансгенные организмы вытесняют природные, препятствуя сохранению и восстановлению естественного биологического разнообразия и баланса. Это представляет доказанную угрозу экологической безопасности государства.

Применение ГМО в качестве продуктов питания показало, что разрешение на использование получает примерно только 25% трансгенов, направляемых на испытания. Это говорит о том, что 75% трансгенных организмов не могут быть использованы в качестве пищевой продукции. Уже доказано, что некоторые виды трансгенов токсичны, являются причиной аллергических реакций и вызывают подавление активности иммунной системы. В России и США в 4-5 раз увеличились аллергические заболевания, а в Скандинавских странах, где категорически запрещены трансгенные организмы, аллергические заболевания постоянно снижаются. Таким образом, ГМО представляют реальную угрозу продовольственной безопасности.

Оставляя на совести защитников ГМО высказывания о «…встраивании животных или растительных генов в геном человека…», следует откровенно сказать, что ГМО потенциально могут рассматриваться как новые виды биологического оружия, расширяющего пути возможных био-террористических атак. Эффект от применения такого оружия может быть выражен не столько в увеличении летальных случаев в настоящем, сколько в росте онкологических, сердечно-сосудистых, нейро-дегенаративных, аутоиммунных заболеваний, вплоть до изменения психики и поведения человека, других заболеваний в последующие периоды.

Таким образом, неконтролируемый оборот ГМО представляет потенциальную угрозу экологической, биологической и продовольственной безопасности государства.


Животноводство

Наибольшее распространение в сельском хозяйстве нанотехнологии получили в ветеринарии, птицеводстве, кормопроизводстве. Благодаря нанотехнологиям повышается продуктивность, улучшаются качество продукции и условия содержания животных.

В Калужском региональном центре «Нанобиотехнология» впервые были выполнены исследования влияния ультрадисперсных нанопорошков (УДНП) металлов на процессы в желудочно-кишечном тракте молодняка домашних животных. Разработаны перспективные биоцидные нанопрепараты, в которых присутствуют УДНП металлов. Такое противодействие патогенной микрофлоре без нарушения генома наследственности целенаправленно регулирует процессы метаболизма питательных веществ и повышает продуктивность домашних животных за счет повышения усвояемости кормов. Металлы в ультрадисперсной форме имеют наряду с высокими бактерицидными свойствами существенно меньшую токсичность и не накапливаются в организме.

Наночастицы бластомерных эмбриональных клеток, включающие в себя внутриклеточные живые структуры рибосомы, митохондрии, вакуоли и лизосомы, вырабатывают коллоидные жизнеспособные системы, состоящие из полипротеидов, ферментов, иммуннореактивных пептидов. Последние положительно влияют на клеточный иммунитет, обменные процессы в клетке и выполняют восстановительную роль при воспалительных процессах. При внутримышечном введении препаратов оплодотворяемость коров повышается на 8-10%.

Наряду с традиционными химическими лекарствами для животных все более широко применяется биологически активная терапия, дополняющая химическое лечение. Применение препаратов природного происхождения нацелено на использование возможностей организма к саморегуляции. Например, лекарство нанобетулин, используемое как в лечебных, так и профилактических целях в виде аэрозолей или наносуспензий с размерами частиц 250 - 700 нм. Основным действующим веществом является экстракт бересты - бетулин, обладающий биологически активными свойствами: гепатопротекторным, гастрозащитным, желчегонным, гипохолестеринемическим, противовоспалительным, противораковым, антиоксидантным.

Доходности животноводства определяется стоимостью кормов. Разработана нанотехнология электроконсервирования силоса зеленых кормов электроактивированным консервантом на основе электролиза 1%-ного раствора поваренной соли, что принципиально повышает сохранность кормов. Использование электроактивированных растворов позволяет отказаться от дорогостоящих химических консервантов, применяемых для заготовки силоса, повысить сохранность силоса. На обработку 1 т силосуемой массы требуется 10-15 л электроконсерванта, при этом удои молока при скармливании рапсового силоса увеличиваются на 8-10%, а среднесуточный привес коров — на 15-18%.

Строительство свинокомплексов на 100-500 тыс. голов стало опасным для молодняка из-за наличия в воздухе аммиака и углекислого газа, концентрация которых достигает, особенно в летний период, предельно допустимой нормы 0,02 мг/л. Электрохимическая очистка загрязненного воздуха без выброса в окружающую среду возможна путем пропускания его через нанодисперсный раствор воды с гашеной известью.


Растениеводство

Представляет интерес, разработанная Санкт-Петербургским государственным аграрным университетом, технология заключения нанопорошков удобрений в микрокапсулы. Активная часть удобрений включена в оболочки из малорастворимых восков, при этом питательные вещества выделяются постепенно, существенно снижая химическую нагрузку на почву.

Перспективной является технология применения биологически активных нанодобавок, в которых в качестве стимуляторов роста растений и активизаторов обменных процессов применяются микроэлементы. Соли металлов в таких удобрениях заменены ультрадисперсными порошками металлов (УДПМ). В Рязанской государственной сельскохозяйственной академии данные исследования проводятся более 10 лет. Определены оптимальные концентрации УДП железа, кобальта и меди в которых они могут быть использованы как микроудобрения, повышающие накопление биологических активных веществ в растениях. Обработка УДПМ семян растений перед посадкой возможна вместе с их протравливанием, при этом незначительный расход (3-5 мг УДПМ на 1 га посевов) многократно окупается прибавкой урожая.

В последние годы в МГАУ им. В, П. Горячкина разработан ряд наноэлектротехнологий для повышения эффективности в семеноводстве. Электрофизическое воздействие на семена способствует увеличению энергии прорастания, всхожести, ускорению пробуждения семян. Наилучшие результаты стимуляции данный метод показывает на наихудшем посадочном материале. Необходимо отметить, что в случае неправильно выбранной дозы воздействия предпосевная обработка может угнетать развитие растений, поэтому данный метод требует дальнейших научных исследований.

Метод диэлектрического сепарирования семян разработан и применяется для повышения качества семенного материала. В процессе сепарирования удаляются травмированные, поврежденные, и что очень важно, карантинные семена, что имеет большое значение для селекции и семеноводства. При вторичной очистке, сортировке и калибровке семян, на всех этапах селекционно-семеноводческого цикла, использование диэлектрических сепараторов позволит ежегодно экономить до 3,5 млн. т зерна и повысить урожайность на 20-30%.

Обработка семян магнитным полем увеличивает водопоглощение, энергию прорастания и ускоряет развитие растений на ранних стадиях. Разработаны установки для магнитной обработки семян, которые легко устанавливаются на погрузчик или протравливатель любого типа, не требуют энергозатрат при обработке. С помощью обработка магнитным полем активизируется ферментативный процесс в семенах, что интенсифицирует гидролиз питательных веществ эндосперма. Повышается степень воздействия питательных веществ эндосперма на формирование проростка. Увеличивается скорость прорастания семян, у проростка формируется более мощная корневая система. Нанотехнологии предпосевной обработки семян и дезинсекции семян магнитным полем можно использовать как альтернативу химическим методам, что, безусловно, является весьма перспективным экологическим начинанием.

Для исключения самоувлажнения семян разработана технология их хранения под постоянным отрицательным электрическим потенциалом, при котором происходит самовыделение влаги и естественное подсушивание.

Без создания приборов, контролирующих качество семян, невозможно дальнейшее развитие семеноводства. Большие перспективы в этом направлении имеют приборы, основанные на измерении не только электрических свойств, но и спектральных характеристик семян по отражению, поглощению и пропусканию в инфракрасной области. Использование наноэлектротехнологий, в частности взаимодействия внешних электромагнитных полей с биологическими полями семян, открывает широкие возможности для семеноводства. Весьма перспективны исследования низкоэнергетических электромагнитных полей информационного уровня.

Для растениеводства играет большую роль борьба с болезнями и вредителями сельскохозяйственных культур. Урон, наносимый сельскому хозяйству болезнями и вредителями, составляет до 175 млрд. рублей ежегодно. Насекомые-вредители и болезни семян в период хранения приводят к потере злаковых культур до 10%, бобовых - от 15 до 60%. Используемые тепловые и химические методы дезинсекции и дезинфекции семян являются энергоемкими и экологически опасными. Грамотная обработка семян электромагнитными излучениями СВЧ-диапазона при закладке на хранение полностью обеззараживает их от патогенной микрофлоры и насекомых-вредителей, что исключает применение ядохимикатов и фумигацию семян.

Для дезинсекции семян может быть использован импульсный режим СВЧ-обработки, обеспечивающий сверхвысокую напряженность электромагнитного поля в импульсе и, как следствие, гибель насекомых-вредителей, что дает возможность полностью отказаться от использования ядохимикатов и других средств протравливания. Сущность данной технологии заключается в дозированном воздействии микросекундной длительности на семена. Под воздействием СВЧ-импульсов семенной материал полностью обеззараживается от болезней, очищается от насекомых-вредителей, при этом в семенах активизируются ростовые процессы. Анализ практического использования указанного СВЧ метода показал, что по сравнению с ядохимикатами энергоемкость обработки снижается в 15-20 раз, на два-три порядка сокращается время обработки.

Начаты работы по методам реструктуризации воды для безъядохимикатной предпосевной обработки семян и защиты растений от вредителей и болезней. Новые методы обработки семян «структурированной водой» по сравнению с химическими методами представляются весьма перспективными.

Достаточно перспективный способ повышения эффективности производства продукции растениеводства - применение биологически активных нанопорошков. Железо в форме нанопорошка легко адсорбируется на подготовленных к посеву семенах, активизируя ферментативную активность, что повышает всхожесть семян. Железо в форме нанопорошка повышает урожайность и устойчивость растений к неблагоприятным условиям среды.

Исследование влияния нанопорошка железа на рост, развитие и продуктивность различных культур (кукуруза, пшеница, подсолнечник) показали, что урожайность зерновых повышается в среднем на 15%, зеленой массы растений - на 25%, клубнеплодов - на 30%. При этом увеличивается содержание клейковины в зерне, содержание масла в семенах подсолнечника и содержание незаменимых аминокислот в листостебельной массе кормовых культур. Расход нанопрепарата незначителен и составляет около 3 г на 1 т семян.

Основываясь на исследованиях С.Н. Виноградского, Н.И. Вавилова, в конце 1990-х годов была разработана технология нанодробления и использования микрогуматов (наногуматов) в растениеводстве. Растения, выращенные с применением микрогуматов, отличаются высоким содержанием микроэлементов, что является ценным показателем в кормопроизводстве. Основная препаративная форма - коллоидная суспензия, включающая в себя действующее вещество в виде наночастиц гуматов с присоединенными к ним микроэлементами и биологически активными веществами. Полевые испытания показали высокие прибавки урожаев практически по всем сельскохозяйственным культурам, при этом прибавки урожая по зерновым в условиях полевого опыта составляли до 60%. Данные цифры многократно перепроверялись и на сегодняшний день применение микрогуматов дает гарантированную прибавку урожая по зерновым от 25% (Кубань, Россия) до 68% (Бурса, Турция).

Применение мелкодисперсных аэрозолей играет важную роль в растениеводстве для дезинфекции, дезинсекции и дезодорации. Более 40% собираемого мирового урожая сберегается благодаря защите растений аэрозолями. При конденсации паров аэрозоля на бактериальном субстрате на поверхности стен и оборудования образуется бактерицидная пленка. Воздух помещения обеззараживается за счет испарения дезинфицирующего вещества из капель аэрозоля. Одной из особенностей веществ, переведенных в аэрозольное состояние, является значительное увеличение их поверхности. Площадь поверхности частиц, при одинаковой суммарной массе вещества, увеличивается с уменьшением их размера, поэтому эффективность их использования значительно повышается при уменьшении размеров аэрозольных частиц менее 1 мкм. Удерживание их на поверхностях увеличивается в 5-20 раз, затраты времени на обработку сокращаются в 3 раза при уровне остаточных количеств ядохимикатов в сотни раз меньшем, чем при опрыскивании.

В последние годы созданы и широко применяются наноэмульсии, активное вещество которых заключено в нанокапсулы масла. В зависимости от вида активного вещества возможно активировать как подавление жизнедеятельности клетки, так и стимуляцию в ней биологических процессов. В качестве антибактериального средства могут использоваться наночастицы серебра, уничтожающие до 150 различных типов организмов. Для транспортировки нанокапсул к обрабатываемым объектам используют наноразмерные аэрозоли, при этом качественно улучшатся технология обработки. Придание частицам аэрозоля электрического заряда, способствует управлению процессами распространения и осаждения электроаэрозоля.

Своевременное выявление и уничтожение возбудителей опасных и карантинных заболеваний имеет решающее значение для предотвращения возникновения и развития эпифитотий. В настоящее время изучается возможность разработки биосенсоров для оценки эффективности бактерицидов против фитопатогенных бактерий. Субъективная оценка степени развития симптомов затрудняет точную оценку биологической эффективности. В рамках данных исследований создается серия штаммов возбудителей бактериальных болезней растений с высоким уровнем флуоресценции. Для количественной оценки эффекта снижения флуоресценции планируется применение отечественной приборной базы — ПЦР-детектора «Джин». Разрабатываемая технология позволяет оценивать динамику распространения инфекции по растению и степень ее подавления при применении испытываемых препаратов. Уменьшаются затраты на испытание новых бактерицидных соединений и средств защиты растений от бактериальных болезней при оценке эффективности применения непосредственно на растении.

Нанотехнологии охватывают многие сферы выращивания растениеводческой продукции. Перспективной разработкой для защищенного грунта является система нанофильтрации, которая исключает загрязнение воды. При выращивании зеленных культур, богатых витаминами, микроэлементами и экозащитными компонентами, наиболее широко применяется проточная тонкослойная (пленочная) гидропоника, являющаяся разновидностью водной культуры. Достоинством данного метода считается создание оптимальных условий для роста корневой системы. Растения постоянно получают достаточное количество влаги, питательных элементов и обеспечиваются кислородом воздуха, что способствует получению высоких урожаев. Так как при проточной гидропонике не используются субстраты (заменители почвы), конечный результат во многом определяется качеством питательного раствора, который зависит от состава воды. Для ее очистки целесообразно использовать фильтры, содержащие наночастицы серебра, которые обладают высокой бактерицидной активностью.


Переработка сельскохозяйственной продукции

Еще одно направление использования нанофильтрационных технологии - применение фильтров с наночастицами металлов для ингибирования процессов сквашивания и брожения. Такие фильтры обеспечивают очистку соков, нектаров, молока и другой жидкой продукции. Разработаны фильтрационные установки МФС для очистки и стабилизации напитков, осветления и очистки сиропов, соков и экстрактов. Такие установки состоят из двух-пяти фильтрационных модулей, последовательно соединенных в каскад. Под давлением часть жидкости проходит через мембрану и удаляется из установки. Концентрат последовательно проходит через все фильтрационные модули с отводом фильтрата от каждого. Во Владимире производят такие керамические нанофильтры для технологий разделения, очистки и концентрирования соков. Применяемые керамические мембраны представляют собой селективные слои сетчатой структуры из супертонких керамических волокон, связанных с подложкой керамической связкой.

В молочной промышленности нанофильтрация позволяет выделить антибиотики, витамины, белки из молока и сыворотки при производстве как традиционных, так и новых продуктов.

Область применения нанофильтров очень широка. Одним из примеров является использование наномембранных технологий для фракционирования молочных белков при переработке подсырной сыворотки в высококачественный заменитель жира. Мембранная фильтрация, совмещенная с тепловой обработкой белка, позволяет получать продукт, напоминающий по вкусу молочный жир. Сфера его применения достаточно широка, например, он может быть добавлен вновь в молоко, предназначенное для выработки сыра типа Гауда, содержащего на 50% меньше жира, чем обычный, однако с таким же насыщенным «жирным» вкусом.

В настоящее время интенсивно развивается направление насыщения пищевого сырья биоактивными компонентами, например, витаминами в виде наночастиц. Нанофильтрация часто используется и для наделения пищевых продуктов ароматом, цветом и другими свойствами.

Наноструктурные материалы позволяют очищать воды даже от тяжелых загрязнителей. Мичуринский государственный аграрный университет разработал нанофильтрующий материал, предназначенный для очистки воды. Этот материал способен улавливать из промывных вод ценные металлы. Нанофильтр толщиной в несколько сантиметров способен очистить воду от цинка, кадмия, свинца, меди, золота, серебра и фтора, исходная концентрация которых может достигать десятков граммов на один литр. Во многих нанофильтрах используются частицы серебра, в результате получаются фильтрующие материалы с улучшенными, а иногда новыми свойствами, такими как бактерицидность, каталитическая активность, избирательная адсорбция. Такие нанофильтры применяют для обработки воды, особенно в паводковые периоды, а также в установках для обеззараживания бытовых канализационных стоков.

Перспективной разработкой являются высокоэффективные фильтры, выполненные по нанотехнологии с использованием нанотрубок и наносеребра. Такие нанофильтры можно использовать для очистки воды на предприятиях АПК, жилищно-коммунального хозяйства, бытовых нужд населения, из неочищенной речной воды с их помощью - получить высококачественную питьевую воду

Перспективно использование нанотехнологий в хлебопекарной промышленности. В настоящее время примерно 60% муки производится из зерна невысокого качества, с повышенной обсемененностью споровыми бактериями. С другой стороны сегодня, наметилась устойчивая тенденция использования хлебобулочных изделий с целью профилактики и оздоровления населения. Использование серебросодержащих пищевых добавок представляет большой интерес для реализации данных планов. В Сибирском университете потребительской кооперации проводятся исследования по разработке серебряных нанобиокомпозитов и их введению в рецептуру хлеба. Полученные результаты показывают, что введение незначительного количества нанокомпозита существенно улучшает микробиологические показатели хлеба.

Прекрасные возможности использования нанотехнологий имеются в масложировой промышленности. В Санкт-Петербургском государственном технологическом институте разработан метод промышленного применения катализаторов на основе наноразмерного палладия и наноуглеродных материалов для гидрирования растительного масла. В основном катализаторами гидрирования в масложировой промышленности являются катализаторы на основе никеля. Технологический процесс осуществляется при температуре до 240° С и давлении водорода до 5 атм. Поскольку сам никель и его соединения обладают аллергенным и канцерогенным действием, то после гидрирования требуются дорогостоящие операции по его отделению. Существенные технологические и экологические затруднения возникают также при утилизации отработанного никелевого катализатора. Катализаторы на основе нанопалладия имеют ряд преимуществ по сравнению с никелевым катализатором, применяемым сегодня для гидрирования растительных масел.

В упаковочной индустрии также широко внедряются нанотехнологий. Созданы наноструктурированные упаковочные материалы, продлевающие срок хранения сельскохозяйственной продукции.

В Переславль-Залесском разработана технология получения нанодисперсий серебра, меди и их смесей. Экспериментально доказано, что образующиеся дисперсии, обладают высокой бактерицидной активностью. Покрытия на основе латексов или вододисперсионных промышленных красок с введенными в них наночастиц серебра показывают биоцидную активность. Полученные покрытия используются в качестве компонентов упаковочных бумаг с различными функциональными возможностями и могут применяться для упаковки пищевых продуктов. Аналогичные антибактериальные упаковки предохраняют колбасные изделия от порчи без использования повышенных количеств консервантов.

Ряд продуктов требует защиты от солнечного излучения. Проблема решается за счет вакуумного напыления металлов на полимерную поверхность, но, к сожалению, при этом не учитываются различные уровни интенсивности светового излучения. Использование наночастиц фотохромных соединений позволяет получать упаковку с изменяющейся оптической плотностью, в зависимости от интенсивности светового потока.

Нанотехнологии преобразуют пищевое производство и выводят его на новый технологический уровень.

Термин «нанотехнологии» уже не первый год на слуху. Однако разбираются в нем далеко не все. Так, считается, будто это наука будущего и применяется она в узкоспециализированных областях. Но это, мягко говоря, не совсем так. Например, нанотехнологии уже активно используются в сельском хозяйстве .

Сельское хозяйство не обходится без спецтехники и от ее работы во многом зависят результаты труда крестьян. Поэтому именно спецтехника стала одним из первых проводников нанотехнологий в сельском хозяйстве. Так, благодаря обработки деталей наночастицами, ресурс узлов и агрегатов вырастает в 7-8 раз.

Например, в фермерских хозяйствах Омской области обрабатывают самую уязвимую часть комбайна, стрельчатые лапы, золотыми наночастицами. В итоге их ресурс вырос с 18 до 120 гектаров на лапу.

Нанотехнологии в овощеводстве

Специалистами доказано, что применение нанопрепаратов в растениеводстве обеспечивает повышение их устойчивости к неблагоприятным погодным условиям. Кроме того, нанотехнологии существенно повышают урожайность культур - для картофеля, зерновых, овощных, плодово-ягодных, хлопка и льна в 1,5-2 раза.

Интересная технология разработана Санкт-Петербургским аграрным университетом. Наноудобрения заключаются в микрокапсулы из малорастворимых восков. В результате питательные вещества выделяются постепенно и равномерно. Это позволяет получить не только максимум пользы от удобрений, но и снизить до минимума химическую нагрузку на почву.

В Рязанской сельскохозяйственной академии уже 10 лет проводят исследования по обработке семян наноудобрениями, состоящими из разных металлических порошков. И достигли успеха. Протравливание семян определенной концентрацией железа, кобальта и меди (всего 3-5 мг на 1 га посевов) многократно окупается прибавкой урожая.

Нанотехнологии уже активно внедряются в послеуборочной обработке подсолнечника, табака и картофеля, при хранении яблок в регулируемых средах, озонировании воздушной среды. А недавно было сделано очень важное открытие в изучении биологической роли кремния для живых организмов. Применение кремнеорганических биостимуляторов в растениеводстве позволяет повысить холодостойкость, выносливость к жаре и засухе, помогает благополучно выйти из стрессовых погодных ситуаций (возвратные заморозки, резкие перепады температуры и т.д.), усиливает защитные функции растений к болезням и вредителям.

Нанотехнологии в животноводстве

В настоящее время наибольшее распространение в сельском хозяйстве нанотехнологии получили в ветеринарии, животноводстве и птицеводстве . Их применение повышает продуктивность, улучшает качество продукции и условия содержания животных.

К примеру, в Калужском региональном центре «Нанобиотехнология» ведутся исследования по использованию спецдобавок в корм. Разработанный специалистами состав не нарушает геном наследственности, микрофлору пищеварительного тракта. Наоборот, налицо улучшение усвоения пищи, продуктивности животных. Плюс нанодобавки обладают высокими бактерицидными свойствами.

А ещё российские ученые применяют на практике экологически чистую технологию электроконсервирования силосного корма. Делается это взамен дорогостоящих органических кислот, требующих соблюдения строгих мер техники безопасности. Такая нанотехнология повышает сохранность кормов до 95%. В животноводстве и птицеводстве это обеспечивает повышение продуктивности в 1,5-3 раза, сопротивляемость стрессам, и падеж уменьшается в 2 раза.

При формировании микроклимата в помещениях, где содержатся животные и птицы, использование нанотехнологий позволяет заменить энергоемкую приточно-вытяжную систему вентиляции электрохимической очисткой воздуха. Также наноустройства можно имплантировать в животных. Это автоматизирует многие процессы и дает возможность передавать в реальном времени необходимые данные.

Нанотехнологии в переработке агропродукции

Широкое распространение сегодня получает технология мембранной фильтрации . Использование мембран на основе наноматериалов позволяет проводить высокую очистку воды, соков, молока и других жидкостей.

Создана наноэлектротехнология комбинированной сушки зерна. В нагретом зерне создается избыточное давление влаги при температуре ниже температуры кипения воды. Вследствие этого ускоряется фильтрационный перенос влаги из зерновки на поверхность в капельножидком состоянии. С поверхности влага выпаривается горячим воздухом. Расход энергии на сушку зерна по сравнению с традиционной конвективной сокращается в 1,3 раза и более. Снижаются микроповреждения семян до 6%, их посевные качества улучшаются на 5%. Для низкотемпературной досушки и обеззараживания зерна дополнительно используется озон, что уменьшает количество бактерий в 24 раза и снижает в 1,5 раза энергозатраты.

Перспективно применение нанотехнологий и в хлебопекарной промышленности . Сегодня примерно 60% муки производится из зерна невысокого качества. Это, естественно, отражается и на микробиологических показателях хлеба. Ученым из Сибири удалось создать нанокомпозит. Его незначительное введение в рецептуру хлебобулочного изделия делает его более полезным для потребителя.

На сегодняшний день наноматериалы и нанотехнологии находят применение практически во всех областях сельского хозяйства: растениеводстве, животноводстве, птицеводстве, рыбоводстве, ветеринарии, перерабатывающей промышленности, производстве сельхозтехники и т. д.

Так, в растениеводстве применение нанопрепаратов, в качестве микроудобрений, обеспечивает повышение устойчивости к неблагоприятным погодным условиям и увеличение урожайности (в среднем в 1,5-2 раза) почти всех продовольственных (картофель, зерновые, овощные, плодово-ягодные) и технических (хлопок, лен) культур. Эффект здесь достигается благодаря более активному проникновению микроэлементов в растение за счет наноразмера частиц и их нейтрального (в электрохимическом смысле) статуса.

Ожидается также положительное влияние наномагния на ускорение (вернее сказать, на увеличение продуктивности) фотосинтеза у растений.

Нанотехнологии применяются при послеуборочной обработке подсолнечника, табака и картофеля, хранении яблок в регулируемых средах, озонировании воздуха.

В животноводстве и птицеводстве при изготовлении кормов нанотехнологии обеспечивают повышение продуктивности, сопротивляемости стрессам и инфекциям (падеж уменьшается в 2 раза).

На основе наноматериалов создано большое число препаратов, позволяющих сократить трение и износ деталей, что продлевает срок службы тракторов и другой сельхозтехники.

Нанотехнологии и наноматериалы (в частности, наносеребро и наномедь) находят широкое применение для дезинфекции сельхозпомещений и инструментов, при упаковке и хранении пищевых продуктов.

В молочной промышленности нанотехнологии используются для создания продуктов функционального назначения. Развивается направление насыщения пищевого сырья биоактивными компонентами (витамины в виде наночастиц).

Незаменимую роль могут сыграть наноматериалы при использовании их в качестве различных катализаторов, например, катализаторов горения для различных видов топлива, в том числе и биотоплива, или катализаторов для гидрирования растительного масла в масло-жировой промышленности. В частности, в Санкт-Петербургском технологическом институте рассматривается возможность использования наноразмерного палладия для гидрирования растительного масла взамен катализатора на основе никеля, обладающего аллергенным и канцерогенным действием.

По мнению ученых, применение нанотехнологий в сельском хозяйстве (при выращивании зерна, овощей, растений и животных) и на пищевых производствах (при переработке и упаковке) приведет к рождению совершенно нового класса пищевых продуктов - "нанопродуктов", которые со временем вытеснят с рынка генномодифицированные продукты. К примеру, подобное мнение высказывается экспертами международной исследовательской организации ЕТС Group.

Согласно общепринятой научной терминологии, продукт может называться "нанопродуктом", если при его выращивании, производстве, переработке или упаковке использовались наночастицы, нанотехнологические разработки и инструменты. Разработчики нанопродуктов обещают более совершенный процесс производства и упаковки продуктов питания, их улучшенный вкус и новые питательные свойства, ожидается также производство "функциональных" продуктов (продукт будет содержать лекарственные или дополнительные питательные вещества). Ожидается также увеличение производительности и уменьшение цен на пищевые продукты. Уже через пару десятков лет использование нанопродуктов будет повсеместным, говорится в докладе, подготовленном для Королевского научного общества Великобритании (Royal Society).

Исследованиями в области нанопродуктов занимаются ученые не только развитых стран, но и ученые развивающихся стран. В частности, научные лаборатории Мексики и Индии объединенными усилиями пытаются создать нетоксичный наногербицид.

Исследователи Арканзаского университета Литл-Рокского Нанотехнологического Центра установили, что экспозиция семян томатов в питательном растворе, содержащим углеродные нанотрубки приводит к их более быстрому и усильному прорастанию. Учёные считают, что углеродные нанотрубки могут стать открытием для всего сельского хозяйства, открыв эру удобрений нового типа.

Рис 7. Слева: томаты, выращенные в обычном питательном растворе;

Справа: томаты, выращенные в питательном растворе с углеродными нанотрубками

Принцип воздействия углеродных нанотрубок следующий. Благодаря своим микроскопическим размерам, нанотрубки легко проникают сквозь кожицу семени, способствуя лучшему проникновению воды и питательных веществ внутрь семян. Это и сказывается на скорости прорастания семян.

Тем не мене многие учёные считают, что использование подобных "нано-удобрений" может привести к непредсказуемым последствиям. Так некоторые опыты с "удобрением" томатов углеродными нанотрубками показали, что плоды оказались "токсичны" для плодовых мушек дрозофил. Кроме того, согласно некоторым исследованиям, углеродные нанотрубки являются канцерогенами для животных организмов.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Вода в доме - Информационный ресурс